Source code for qutip_qip.device.cavityqed

import warnings
from copy import deepcopy

import numpy as np

from qutip import (
from ..circuit import QubitCircuit
from ..operations import Gate
from .processor import Processor, Model
from .modelprocessor import ModelProcessor, _to_array
from ..operations import expand_operator
from ..pulse import Pulse
from ..compiler import GateCompiler, CavityQEDCompiler

__all__ = ["DispersiveCavityQED"]

[docs]class DispersiveCavityQED(ModelProcessor): """ The processor based on the physical implementation of a dispersive cavity QED system (:obj:`.CavityQEDModel`). The available Hamiltonian of the system is predefined. For a given pulse amplitude matrix, the processor can calculate the state evolution under the given control pulse, either analytically or numerically. (Only additional attributes are documented here, for others please refer to the parent class :class:`.ModelProcessor`) Parameters ---------- num_qubits: int The number of qubits in the system. num_levels: int, optional The number of energy levels in the resonator. correct_global_phase: float, optional Save the global phase, the analytical solution will track the global phase. It has no effect on the numerical solution. **params: Hardware parameters. See :obj:`CavityQEDModel`. Examples -------- .. testcode:: import numpy as np import qutip from qutip_qip.circuit import QubitCircuit from qutip_qip.device import DispersiveCavityQED qc = QubitCircuit(2) qc.add_gate("RX", 0, arg_value=np.pi) qc.add_gate("RY", 1, arg_value=np.pi) qc.add_gate("ISWAP", [1, 0]) processor = DispersiveCavityQED(2, g=0.1) processor.load_circuit(qc) result = processor.run_state( qutip.basis([10, 2, 2], [0, 0, 0]), options=qutip.Options(nsteps=5000)) final_qubit_state = result.states[-1].ptrace([1, 2]) print(round( final_qubit_state,[2, 2], [0, 0])) ), 4)) .. testoutput:: 0.9994 """ def __init__( self, num_qubits, num_levels=10, correct_global_phase=True, **params ): model = CavityQEDModel( num_qubits=num_qubits, num_levels=num_levels, **params, ) super(DispersiveCavityQED, self).__init__( model=model, correct_global_phase=correct_global_phase ) self.correct_global_phase = correct_global_phase self.num_levels = num_levels self.native_gates = ["SQRTISWAP", "ISWAP", "RX", "RZ"] self.spline_kind = "step_func" @property def sx_ops(self): """ list: A list of sigmax Hamiltonians for each qubit. """ return self.ctrls[0 : self.num_qubits] @property def sz_ops(self): """ list: A list of sigmaz Hamiltonians for each qubit. """ return self.ctrls[self.num_qubits : 2 * self.num_qubits] @property def cavityqubit_ops(self): """ list: A list of interacting Hamiltonians between cavity and each qubit. """ return self.ctrls[2 * self.num_qubits : 3 * self.num_qubits] @property def sx_u(self): """array-like: Pulse matrix for sigmax Hamiltonians.""" return self.coeffs[: self.num_qubits] @property def sz_u(self): """array-like: Pulse matrix for sigmaz Hamiltonians.""" return self.coeffs[self.num_qubits : 2 * self.num_qubits] @property def g_u(self): """ array-like: Pulse matrix for interacting Hamiltonians between cavity and each qubit. """ return self.coeffs[2 * self.num_qubits : 3 * self.num_qubits]
[docs] def eliminate_auxillary_modes(self, U): """ Eliminate the auxillary modes like the cavity modes in cqed. """ psi_proj = tensor( [basis(self.num_levels, 0)] + [identity(2) for n in range(self.num_qubits)] ) result = psi_proj.dag() * U * psi_proj # In qutip 5 multiplication of matrices # with dims [[1, 2], [2, 2]] and [[2, 2], [1, 2]] # will give a result of # dims [[1, 2], [1, 2]] instead of [[2], [2]]. if result.dims[0][0] == 1: result = result.ptrace(list(range(len(self.dims)))[1:]) return result
[docs] def load_circuit(self, qc, schedule_mode="ASAP", compiler=None): if compiler is None: compiler = CavityQEDCompiler( self.num_qubits, self.params, global_phase=0.0 ) tlist, coeff = super().load_circuit( qc, schedule_mode=schedule_mode, compiler=compiler ) self.global_phase = compiler.global_phase return tlist, coeff
[docs]class CavityQEDModel(Model): """ The physical model for a dispersive cavity-QED processor (:obj:`.DispersiveCavityQED`). It is a qubit-resonator model that describes a system composed of a single resonator and a few qubits connected to it. The coupling is kept small so that the resonator is rarely excited but acts only as a mediator for entanglement generation. The single-qubit control Hamiltonians used are :math:`\sigma_x` and :math:`\sigma_z`. The dynamics between the resonator and the qubits is captured by the Tavis-Cummings Hamiltonian, :math:`\propto\sum_j a^\dagger \sigma_j^{-} + a \sigma_j^{+}`, where :math:`a`, :math:`a^\dagger` are the destruction and creation operators of the resonator, while :math:`\sigma_j^{-}`, :math:`\sigma_j^{+}` are those of each qubit. The control of the qubit-resonator coupling depends on the physical implementation, but in the most general case we have single and multi-qubit control in the form .. math:: H= \\sum_{j=0}^{N-1} \\epsilon^{\\rm{max}}_{j}(t) \\sigma^x_{j} + \\Delta^{\\rm{max}}_{j}(t) \\sigma^z_{j} + J_{j}(t) (a^\\dagger \\sigma^{-}_{j} + a \\sigma^{+}_{j}). The effective qubit-qubit coupling is computed by the .. math:: J_j = \\frac{g_j g_{j+1}}{2}(\\frac{1}{\\Delta_j} + \\frac{1}{\\Delta_{j+1}}), with :math:`\\Delta=w_q-w_0` and the dressed qubit frequency :math:`w_q` defined as :math:`w_q=\sqrt{\epsilon^2+\delta^2}`. Parameters ---------- num_qubits : int The number of qubits :math:`N`. num_levels : int, optional The truncation level of the Hilbert space for the resonator. **params : Keyword arguments for hardware parameters, in the unit of GHz. Qubit parameters can either be a float or a list of the length :math:`N`. - deltamax: float or list, optional The pulse strength of sigma-x control, :math:`\\Delta^{\\rm{max}}`, default ``1.0``. - epsmax: float or list, optional The pulse strength of sigma-z control, :math:`\\epsilon^{\\rm{max}}`, default ``9.5``. - eps: float or list, optional The bare transition frequency for each of the qubits, default ``9.5``. - delta : float or list, optional The coupling between qubit states, default ``0.0``. - g : float or list, optional The coupling strength between the resonator and the qubit, default ``1.0``. - w0 : float, optional The bare frequency of the resonator :math:`w_0`. Should only be a float, default ``0.01``. - t1 : float or list, optional Characterize the amplitude damping for each qubit. - t2 : list of list, optional Characterize the total dephasing for each qubit. """ def __init__(self, num_qubits, num_levels=10, **params): self.num_qubits = num_qubits self.num_levels = num_levels self.dims = [num_levels] + [2] * num_qubits self.params = { # default parameters "deltamax": 1.0, "epsmax": 9.5, "w0": 10, "eps": 9.5, "delta": 0.0, "g": 0.01, } self.params.update(deepcopy(params)) self._drift = [] self._controls = self._set_up_controls() self._compute_params() self._noise = []
[docs] def get_all_drift(self): return self._drift
@property def _old_index_label_map(self): num_qubits = self.num_qubits return ( ["sx" + str(i) for i in range(num_qubits)] + ["sz" + str(i) for i in range(num_qubits)] + ["g" + str(i) for i in range(num_qubits)] ) def _set_up_controls(self): """ Generate the Hamiltonians for the cavity-qed model and save them in the attribute `ctrls`. Parameters ---------- num_qubits: int The number of qubits in the system. """ controls = {} num_qubits = self.num_qubits num_levels = self.num_levels # single qubit terms for m in range(num_qubits): controls["sx" + str(m)] = (2 * np.pi * sigmax(), [m + 1]) for m in range(num_qubits): controls["sz" + str(m)] = (2 * np.pi * sigmaz(), [m + 1]) # coupling terms a = tensor( [destroy(num_levels)] + [identity(2) for n in range(num_qubits)] ) for n in range(num_qubits): # FIXME expanded? sm = tensor( [identity(num_levels)] + [ destroy(2) if m == n else identity(2) for m in range(num_qubits) ] ) controls["g" + str(n)] = ( 2 * np.pi * a.dag() * sm + 2 * np.pi * a * sm.dag(), list(range(num_qubits + 1)), ) return controls def _compute_params(self): """ Compute the qubit frequency and detune. """ num_qubits = self.num_qubits w0 = self.params["w0"] # only one resonator # same parameters for all qubits if it is not a list for name in ["epsmax", "deltamax", "eps", "delta", "g"]: self.params[name] = _to_array(self.params[name], num_qubits) # backward compatibility self.params["sz"] = self.params["epsmax"] self.params["sx"] = self.params["deltamax"] # computed wq = np.sqrt(self.params["eps"] ** 2 + self.params["delta"] ** 2) self.params["wq"] = wq self.params["Delta"] = wq - w0 # rwa/dispersive regime tests if any(self.params["g"] / (w0 - wq) > 0.05): warnings.warn("Not in the dispersive regime") if any((w0 - wq) / (w0 + wq) > 0.05): warnings.warn( "The rotating-wave approximation might not be valid." )
[docs] def get_control_latex(self): """ Get the labels for each Hamiltonian. It is used in the method method :meth:`.Processor.plot_pulses`. It is a 2-d nested list, in the plot, a different color will be used for each sublist. """ num_qubits = self.num_qubits return [ {f"sx{m}": r"$\sigma_x^" + f"{m}$" for m in range(num_qubits)}, {f"sz{m}": r"$\sigma_z^" + f"{m}$" for m in range(num_qubits)}, {f"g{m}": f"$g^{m}$" for m in range(num_qubits)}, ]